水电之家讯:采用液相法制得α-MnO2电极材料,制备成电极并组装成对称型超级电容器。采用恒流充放电、循环伏安、交流阻抗等方法在三电极体系下对超级电容器的正、负极进行测试,分别研究它们在充放电过程中的电化学性能。结果发现,正极在0.31~0.41V,0.43~0.50V(vs.Hg/HgO)发生电化学反应,对电容器电压的影响起主要作用,而负极则表现稳定未发生反应;随着电极电位的增加,反应电阻与接触电阻减小,超级电容器电阻主要由负极决定;负极表面双电层的形成速度小于正极,而受电位影响的程度大于正极,其电荷保持能力优于正极。
张莹a,刘开宇a,张伟a,b,王洪恩a
(a.中南大学化学化工学院长沙410083)
(b.中国船舶重工集团第七一二研究所武汉430064)
超级电容器比传统电容器具有更高的比电容和能量密度,比电池具有更高的功率密度,具有广阔的应用前景。
目前对超级电容器的研究多集中在电极材料的制备方法上,而关于充放电过程中超级电容器及电极的研究方法、性能的变化以及相互间的影响机理报道不多。其中,Balducci等研究了活性炭/3-甲基聚乙烯非对称超级电容器的循环稳定性,Hahn等利用交流阻抗等电化学方法研究了双电层超级电容器在不同温度下的性能,周章华等将二氧化锰与聚乙烯复合材料沉积在多孔活性炭表面并利用循环伏安法等对其电极进行电化学手段分析,Fuertes等简要提到了超级电容器用多孔活性炭在TEABF4有机电解质与H2SO4电解质中的自放电,Qu提出了半导体态活性炭电极与电解液之间形成的双电层模型,并将其分成Helmholtz电容、溶液扩散电容和进入活性炭体相内离子电荷电容三部分。
而对超级电容器的充放电机理、电极的变化及其对超级电容器影响的报道不多,研究方法多为三电极体系下对单电极(工作电极)进行交流阻抗、循环伏安等电化学分析。而超级电容器在工作中正负极发生着不同的变化,与三电极体系单电极(工作电极)的电化学行为也有所不同。
本文对纳米MnO2对称型电容器进行充放电测试,在正负极充放电电位范围内对电极进行循环伏安测试,进一步研究电极在不同电位下的交流阻抗性能,并对超级电容器及其电极进行了自放电性能测试,从而得到正负极性能变化及其对电容器性能的影响规律。
1实验部分
1.1电极材料的制备与表征
以分析纯MnSO4和K2S2O8为原料,按摩尔比1∶1溶于一定量去离子水中,加入适量浓硫酸调节溶液pH值为1,将所得溶液于60℃下保温22h。反应完成后,将所得黑色沉淀抽滤,并用去离子水和无水乙醇反复洗涤以除去杂质离子。将所得产物于110℃下干燥5h,即得所需MnO2样品。
采用D-500型X-ray衍射仪(Siemens公司)对样品进行XRD测试(X-raydiffraction),CuKα靶材,石墨单色器,管电压为36kV,管电流为36mA,扫描范围10°~70°,扫速4(°)/min,波长0.15418nm。采用H-7650型透射电镜(日立公司)以及KYKY-2800型扫描电子显微镜(中科科仪公司)对样品形貌进行表征。
1.2电极的制备与电化学测试
将1.1节所制MnO2与乙炔黑、聚四氟乙烯按质量比75∶15∶10混合均匀,采用辊压法,以泡沫镍为集流体,将其压成0.3mm厚的电极片,于220℃下真空干燥至恒重,各电极活性物质约86mg。将两片相同的电极用隔膜纸(FS2296)隔开,以6mol/LKOH为电解液,组装成夹心式对称型超级电容器。
水电之家为您提供最全面的管材,管件,水电,电线,电工,管材水电品牌的装修知识点和各种管材水电的导购与在线购买服务,拥有最便宜的管材水电价格和最优质的售后服务,每天都有秒杀的抢购活动哦!敬请登陆水电之家:http://shuidian.jc68.com/